\qquad

SECOND SEMESTER DIPLOMA EXAMINATION IN ELECTRICAL AND ELECTRONICS ENGINEERING - MARCH, 2016

BASIC ELECTRICAL ENGINEERING

[Time : 3 hours
(Maximum marks : 100)

PART - A
(Maximum marks : 10)

Marks

I Answer the following questions in one or two sentences. Each question carries 2 marks.

1. Define temperature co-efficient of resistance.
2. Four 1Ω resistances are connected in parallel. What is the equivalent resistance ?
3. If charge $\mathrm{Q}=144 \mu \mathrm{C}$ and capacitance $\mathrm{C}=6 \mu \mathrm{~F}$, find voltage V .
4. Define reluctance and state its unit
5. Write the units of magnetic flux and mmf.

PART-B
(Maximum marks : 30)
II Answer any five questions from the following. Each question carries 6 marks.

1. A heater wire of length 50 cm and $1 \mathrm{~mm}^{2}$ in cross-section carries a current of 2 A when connected across a 2 V battery. What is the resistivity of the wire ?
2. Draw a DC network and write mesh equations applying Kirchhoff's voltage law.
3. A current of 20 A goes through two ammeters A and B connected in series. The p.d across A is 0.2 V and across B is 0.3 V . Find how the same current will divide between A and B when they are connected in parallel ?
4. State and explain reciprocity theorem.
5. State and explain the laws of electrostatics.
6. State Faradays laws of electromagnetic induction.
7. Draw B-H curve and mark the various regions in the graph.
PART - C
(Maximum marks : 60)
(Answer one full question from each unit. Each full question carries 15 marks.)
UNIT - I

III (a) State Ohm's law.
(b) Draw atomic structure of copper atom. Atomic number $=29$, atomic weight $=64$.
(c) A wheatstone bridge circuit has $\mathrm{R}_{\mathrm{AB}}=60 \Omega=\mathrm{R}_{\mathrm{CD}}, \mathrm{R}_{\mathrm{BC}}=\mathrm{R}_{\mathrm{AD}}=40 \Omega$, $R_{B D}=100 \Omega$. Supply is connected to points A and C. If the current drawn from the supply is 100 mA , find the currents through $\mathrm{R}_{\mathrm{BC}}, \mathrm{R}_{\mathrm{CD}}$ and R_{BD}.

OR
IV (a) Define electric power. Write the relationship between $\mathrm{V}, \mathrm{I}, \mathrm{R}$ and P .
(b) Calculate the energy spent for a 60 W lamp working 8 hours day for one year.
(c) Two conductors, one of copper and the other of iron, are connected in parallel and at $20^{\circ} \mathrm{C}$ carry equal currents. What proportion of current will pass through each, if the temperature is raised to $100^{\circ} \mathrm{C}$. Assume α for copper as 0.0042 and for iron as 0.006 per ${ }^{\circ} \mathrm{C}$ at $20^{\circ} \mathrm{C}$.

$$
\mathrm{U}_{\mathrm{NIT}} \text { - II }
$$

V (a) Write any three properties of series circuit. 3
(b) State super position theorem.
(c) The galvanometer in figure below has a resistnce of 5Ω. Find the current through the Galvanometer using Thevinin's Theorem.

VI (a) Write any three properties of parallel circuit.
(b) State max. power transfer theorem.
(c) Find Norton's equivalent for the network to the left of terminals $\mathrm{X}-\mathrm{Y}$ in figure shown below.

Unit - III
VII (a) What is meant by dielectric strength of a medium ?
(b) Relative permittivity of mica is 5 . What is its absolute permittivity ?
(c) $\mathrm{A} 10 \mu \mathrm{~F}, 20 \mu \mathrm{~F}$ and a $40 \mu \mathrm{~F}$ capacitors are connected in series to a 399 volt source emf.
(i) What is the equivalent capacitance ?
(ii) What is the magnitude of charge across each capacitor?
(iii) What is the potential difference across each capacitor ?

VIII (a) Write any three applications of capacitors.
(b) Calculate the total capacitance, if three capacitors of capacitance $2 \mu \mathrm{~F}, 4 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$ are connected in
(i) Series
(ii) Parallel
(c) Derive the expression for energy stored in a capacitor.
Unit - IV

IX (a) State Fleming's left hand rule. 3
(b) State Lenz's law.
(c) A mild steel ring having a cross-sectional area of $500 \mathrm{~mm}^{2}$ and a mean circumference of 400 mm has a coil of 200 turns wound uniformly around it. Calculate :
(i) The reluctance of the ring
(ii) The current required to produce a flux of $800 \mu \mathrm{~Wb}$ in the ring.

Take relative permeability of mild steel as 400 at the given flux density.

Or

X (a) Define self inductance.
(b) State Fleming's right hand rule. 3
(c) Derive expression for self inductance and mutual inductance.

