TED $(15) - 2031$	2.0	8		Reg. No.
(REVISION — 2015)				Signature

SECOND SEMESTER DIPLOMA EXAMINATION IN ELECTRICAL AND ELECTRONICS ENGINEERING — MARCH, 2016

BASIC ELECTRICAL ENGINEERING

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- I Answer the following questions in one or two sentences. Each question carries 2 marks.
 - Define temperature co-efficient of resistance.
 - 2. Four 1Ω resistances are connected in parallel. What is the equivalent resistance?
 - 3. If charge $Q = 144 \mu C$ and capacitance $C = 6 \mu F$, find voltage V.
 - 4. Define reluctance and state its unit.
 - 5. Write the units of magnetic flux and mmf.

 $(5 \times 2 = 10)$

PART-B

(Maximum marks: 30)

- II Answer any five questions from the following. Each question carries 6 marks.
 - 1. A heater wire of length 50cm and 1mm² in cross-section carries a current of 2A when connected across a 2V battery. What is the resistivity of the wire?
 - 2. Draw a DC network and write mesh equations applying Kirchhoff's voltage law.
 - 3. A current of 20A goes through two ammeters A and B connected in series. The p.d across A is 0.2V and across B is 0.3V. Find how the same current will divide between A and B when they are connected in parallel?
 - 4. State and explain reciprocity theorem.
 - State and explain the laws of electrostatics.
 - 6. State Faradays laws of electromagnetic induction.
 - 7. Draw B-H curve and mark the various regions in the graph.

 $(5 \times 6 = 30)$

Marks

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

$U_{NIT}-I \\$

III (a) State Ohm's law.

3

(b) Draw atomic structure of copper atom. Atomic number = 29, atomic weight = 64.

3

(c) A wheatstone bridge circuit has $R_{AB} = 60\Omega = R_{CD}$, $R_{BC} = R_{AD} = 40\Omega$, $R_{BD} = 100\Omega$. Supply is connected to points A and C. If the current drawn from the supply is 100mA, find the currents through R_{BC} , R_{CD} and R_{BD} .

9

OR

IV (a) Define electric power. Write the relationship between V, I, R and P.

3

(b) Calculate the energy spent for a 60W lamp working 8 hours day for one year.

3

(c) Two conductors, one of copper and the other of iron, are connected in parallel and at 20°C carry equal currents. What proportion of current will pass through each, if the temperature is raised to 100°C. Assume α for copper as 0.0042 and for iron as 0.006 per °C at 20°C.

9

Unit - II

V (a) Write any three properties of series circuit.

3

(b) State super position theorem.

3

(c) The galvanometer in figure below has a resistnce of 5Ω . Find the current through the Galvanometer using Thevinin's Theorem.

9

		Ma	ırks				
VI	(a)	Write any three properties of parallel circuit.	3				
	(b)	State max. power transfer theorem.	3				
	(c)	Find Norton's equivalent for the network to the left of terminals X-Y in figure shown below.					
		4-2 30V 22 X					
a T		- m					
		6A (\$2.2 \$3.2					
		Y					
			9				
		Unit – III					
VII	(a)	What is meant by dielectric strength of a medium?	3				
	(b)	Relative permittivity of mica is 5. What is its absolute permittivity?	3				
	(c)	A 10 μ F, 20 μ F and a 40 μ F capacitors are connected in series to a 399 volt source emf.					
		(i) What is the equivalent capacitance?					
		(ii) What is the magnitude of charge across each capacitor?					
		(iii) What is the potential difference across each capacitor?	9				
		OR					
VIII	(a)	Write any three applications of capacitors.					
	(b)	Calculate the total capacitance, if three capacitors of capacitance 2 μF , 4 μF and 6 μF are connected in					
		(i) Series (ii) Parallel	3				
	(c)	Derive the expression for energy stored in a capacitor.	9				
		Unit – IV					
IX	(a)	State Fleming's left hand rule.	3				
	(b)	State Lenz's law.	3				
	(c)	A mild steel ring having a cross-sectional area of 500mm ² and a mean circumference of 400mm has a coil of 200 turns wound uniformly around it.					
		Calculate:					
		(i) The reluctance of the ring					
		(ii) The current required to produce a flux of 800 μWb in the ring.					
		Take relative permeability of mild steel as 400 at the given flux density.	9				
v	(-)·	OR	2				
X	(a)	Define self inductance. State Floring's right hand rule	3 ·				
	(b)	State Fleming's right hand rule.	3				
	(c)	Derive expression for self inductance and mutual inductance.	9				