TED	(15)	-2002

(REVISION - 2015)

Reg. No.	
Signatura	

SECOND SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY — MARCH, 2016

ENGINEERING MATHEMATICS - II

(Common to all branches except DCP and CABM)

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions. Each question carries 2 marks.
 - 1. Find the sum of the vector $\vec{a} = \hat{i} 2\hat{J} + \hat{k}$, $\vec{b} = -2\hat{i} + 4\hat{J} + 5\hat{k}$, $\vec{c} = \hat{i} 6\hat{J} + 7\hat{k}$.
 - 2. If $\begin{vmatrix} x^2 & 3 \\ 4 & 1 \end{vmatrix} = \begin{vmatrix} 9 & 4 \\ 8 & 5 \end{vmatrix}$, find x.
 - 3. Subtract $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ from $\begin{bmatrix} 8 & 6 \\ 2 & 3 \end{bmatrix}$.
 - 4. Evaluate $\int_0^1 x^3 (x^2 + 1) dx$.
 - 5. Find the order and degree of the differential equation

$$\left(\frac{d^3y}{dx^3}\right)^2 + 4\left(\frac{d^2y}{dx^2}\right)^4 + 5\frac{dy}{dx} - 4y = 0.$$
 (5×2 = 10)

PART-B

(Maximum marks: 30)

- II Answer any five questions from the following. Each question carries 6 marks.
 - 1. Given $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ $\vec{b} = -\hat{i} + 3\hat{j} + 2\hat{k}$. If a unit vector in the direction of $\vec{3}\vec{a} + 4\vec{b}$ and $x\hat{i} + y\hat{j} + z\hat{k}$ are equal, find x, y, z.
 - 2. Find the coefficient of x^{18} in the expansion of $\left(x^4 \frac{1}{x^3}\right)^{15}$.
 - 3. Solve the following system of equations using determinants. 2x + 3y + z = 11 2x y + 4z = 13, 3x + 4y 5z = 3.

5

5

5

5

5

- Express the matrix $A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 2 & 3 \\ 3 & 1 & 0 \end{bmatrix}$ as the sum of a symmetric and skew symmetric matrix.
- Evaluate $\int_{-\infty}^{\pi/2} \cos 4x \cos x dx$.
- Find the area of enclosed between the line 2x + y = 1 and the curve $y = x^2 - 6x + 4.$

7. Solve
$$\frac{dy}{dx} + ycotx = 2cosx$$
. (5×6 = 30)

PART-C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

$$U_{NIT} - I$$

- III (a) Find the values of λ so that the two vectors $2\hat{i} + 3\hat{j} \hat{k}$ and $4\hat{i} + 6\hat{j} \lambda \hat{k}$ are: (ii) Perpendicular (i) Parallel
 - (b) Find the workdone by the force $\vec{F} = \hat{i} + 2\hat{j} + \hat{k}$ acting on a particle which is displaced from the point with position vector $2\hat{i} + \hat{J} + \hat{k}$ to the point with position vector $3\hat{i} + 2\hat{j} + 4\hat{k}$.
 - (c) Find the middle terms in the expansion of $(x + 2y)^7$. 5

- IV (a) Expand $\left(x^3 \frac{1}{x^2}\right)^5$ binomially.
 - (b) A force $\vec{F} = 4\hat{i} 3\hat{k}$ passes through the point 'A' whose position vector is $2\hat{i} - 2\hat{j} + 5\hat{k}$. Find the moment of force about the point 'B' whose position vector is $\hat{i} - 3\hat{J} + \hat{k}$.
 - (c) If $\overrightarrow{a} = 3\hat{i} + 2\hat{j} 2\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} + \hat{k}$, Calculate: (i) $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b})$ (ii) $(\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{a} - \overrightarrow{b})$ 5

- V (a) Solve for x, if $\begin{vmatrix} x+1 & 2 & 3 \\ 1 & x+2 & 3 \\ 1 & 2 & x+3 \end{vmatrix} = 0$. 5
 - (b) If $A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 3 & 4 \\ 1 & 1 \end{bmatrix}$ compute AB and BA and hence show 5
 - (c) Solve the system of equations by finding the inverse of the coefficient matrix x - y + z = 4, 2x + y - 3z = 0, x + y + z = 2.

Marks

VI	(0)	Find the adjoint of the matrix	5
VI	(a)	Find the adjoint of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$	
	(b)	Solve $\frac{1}{x} - \frac{2}{y} + 1 = 0$, $\frac{3}{x} + \frac{2}{y} = 3$.	5
	(c)	If $A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & 6 \\ 3 & 2 & 7 \end{bmatrix}$, compute $A + A^{T}$ and $A - A^{T}$. Show that $A + A^{T}$ is	
		symmetric and $A - A^{T}$ is skew symmetric.	5
		Unit - III	3
VII	(a)	Evaluate:	
		(i) $\int \sin^2 x dx$ (ii) $\int \frac{x^2 + 2}{x} dx$	3+2
		Evaluate $\int_{1}^{e} logx dx$	5
	(c)	Evaluate $\int_0^1 \frac{1-2x}{x^2-x+1} dx.$	5
		Or	
VIII	(a)	Evaluate $\int \frac{\cos 2x}{\cos^2 x \sin^2 x} dx$.	5
	(b)	Evaluate:	7.
		(i) $\int \frac{1 + \cos x}{(x + \sin x)^2} dx$ (ii) $\int e^x \sec^2(e^x) dx$	3+2
	(c)	Evaluate $\int_0^{\pi/2} \sqrt{1 + \sin 2x} dx$	5
		Unit – IV	
IX,	(a)	Find the area enclosed by the curve $y = x^2$ and the straight line $y = 3x + 4$.	5
	(b)	Obtain the volume of the solid obtained by rotating one arch of the curve $y = sinx$ about the X-axis.	5
	(c)	Solve $x \frac{dy}{dx} + 3y = 5x^2$.	5
X	(a)	Find the volume of the solid formed by the revolution of the area bounded by the	
		parabola $y^2 = 25x$, the x-axis and the lines $x = 1$ and $x = 2$ about the x-axis.	5
	(b)	Solve $\frac{d^2y}{dx^2} = cosec^2x$.	5
	(c)	Solve $\frac{dy}{dx} + \frac{1+y^2}{1+x^2} = 0.$	5